Posts Tagged ‘OnScreen DNA’

OnScreen DNA Complete: Save 25% With Our New DNA-Learning iPad App Bundle

Thursday, September 18th, 2014

bundle

Apple has just introduced the ability for app developers to bundle multiple apps on the App Store into a single package priced below the cost of the individual apps purchased separately. And if you’ve already purchased one or more of the apps in the bundle, you can apply what you’ve already paid to the cost of completing the bundle. This Complete My Bundle works just the same as the iTunes Complete My Album feature for people that have bought one or more songs off an album and want to download the rest of it without paying what the sum of the individual tracks would amount to. This is a feature I had been wishing for and had even tried to figure out a convoluted ways of implementing myself via in-app-purchases. I’m very glad I didn’t, as it has all been taken care of beautifully now.

I’m delighted to announce OnScreen DNA Complete, which is a bundle of OnScreen DNA Model, OnScreen Gene Transcription, and OnScreen DNA Replication, our three iPad apps that show the structure of DNA and how it works in a cell, all using the same 3D interactive model with animations that are scientifically accurate, within the limits of the molecular model. The model has been chosen to show the essential molecular components and the double helix structure of DNA, unobscured by the atomic details of the molecules. See the following links for some reviews and descriptions of the apps.

Each of the three apps in the OnScreen DNA Complete bundle currently (9/18/14) sells for $4, and the bundle costs $9, which translates to a 25% discount. Purchasing the apps in the bundle is like getting two of them at full price and the third for only $1. Which is exactly what someone that already has bought two of the apps at full price will pay to get the third. Anyone that has bought one at full price, can get the other two for $5 total.

That means you can try one app, see how you like it, and then apply what you’ve already paid to the bundle price that gets you the other two. You don’t have to remember what you paid for an app, as Apple remembers for you. If you have already paid as much or more than the total bundle price, then you can download the rest of the bundle for free, which will be great for people that have bought apps before a big price drop. That won’t apply to the OnScreen DNA Complete bundle at this point, since the apps have not sold at a higher price, but it will for some other bundles. Apple does insure that the bundle price on any day must be less than the price of the component apps total price for that day, so there is no danger of a false bargain.

NOTE: As I write, there is an ugly bug in the iPad App Store app that makes full-screen views of the app screenshots associated with bundles look terrible. Believe me, our screen shots look great. If you want to see how the images look filling the iPad screen, go to the descriptions of the individual apps. Hopefully, Apple will catch this soon. I filed a bug report.

The apps have all been tested to work great under the new iOS 8 system without upgrade. Go get that OnScreen DNA Complete bundle!

We’re Celebrating DNA Day (April 25) Again with a One-Day Sale: All DNA Apps at Half-Price!

Thursday, April 24th, 2014

Sixty-one years since the double helix structure of DNA was discovered! Eleven years since the human genome was mapped!

From the Centers for Disease Control and Prevention (CDC) website: “National DNA Day is a special day when teachers, students, and the public can learn more about genetics and genomics. The National Human Genome Research Institute (NHGRI) at the National Institutes of Health has sponsored DNA Day for the past ten years, to commemorate the completion of the Human Genome Project in April 2003 and of Watson and Crick’s discovery of the double helix structure of DNA.”

To celebrate DNA Day, we are reducing our price on all DNA-related apps by $2 for the day on the US App Stores (with comparable price reductions on app stores for every country).

The apps selling for only $1.99 (50% off) on April 25 are:

OnScreen DNA Model for iPad

OnScreen DNA Replication for iPad

OnScreen Gene Transcription for iPad


OnScreen Retrovirus for iPad

OnScreen DNA Model for Mac

And selling for only 99¢ (67% off) is
OnScreen DNA Model for iPhone

The OnScreen DNA Model apps (on iPad, iPhone, and Mac) focus on the details of DNA’s double helix structure, using a 3D, color-coded, virtual model that the user can rotate and zoom. Explanatory text deals with the molecules and chemical bonds of the double helix. Animations show two important lab and biotechnology phenomena of DNA: denaturation, in which the strands separate, and renaturation, in which they reunite.

OnScreen DNA Replication
makes use of the same DNA model to show how, through the action of specific enzymes, a DNA molecule is perfectly duplicated before cell division. The various steps in the process, including the action of telomerase to prevent strand shortening, are shown in 3D animations and described in some detail.

OnScreen Gene Transcription makes use of the same DNA model to show how a genetic recipe stored in the sequence of molecules of DNA is copied by construction of a messenger RNA molecule. The various steps in the process, shown in 3D animations that make it clear that messenger RNA is constructed as part of a hybrid RNA/DNA double helix, not a 2D ladder, are described in some detail, emphasizing the role of certain enzymes.

OnScreen Retrovirus models nucleic acids in the same way as the other apps in the suite. Its simulations show step by step how a retrovirus (such as HIV) copies its single stranded RNA genome into double stranded DNA ready to be inserted into the host cell’s DNA.

The apps show details of structure and processes that are sometimes depicted in erroneous ways in places that should know better. Animations make the processes memorable. Discussion of the chemistry involved is at an introductory level, so the apps are useful for learning about DNA to a wide range of students or anyone interested in the science of Life. There really is nothing comparable on the internet.

Educational purchasers enrolled in Apple’s Volume Purchase Program still get 50% off the sale price when buying twenty or more copies at a time.

Spread the word. This is a one-day-only sale.

Welcome to Boston, Science Teachers! Have a Free DNA App!

Wednesday, April 2nd, 2014

The National Science Teachers Association (NSTA) is having its national meeting in Boston, April 3-6. Around 10,000 science teachers and school administrators are expected to attend. Given that I live a subway ride away from the meeting site, it was a no-brainer for me to take advantage of this opportunity to see what is going on the world of science teaching, to which I feel I belong, but only as a virtual teacher, making apps to teach science. I expect to talk to some of the people that have direct contact with students every day. I’m hoping to get some useful critiques of my apps, as well as making more people aware of them.

As part of this effort to make more science teachers, especially biology teachers, aware of my suite of interactive DNA apps, I’m making OnScreen DNA Model for iPhone (usually $2.99) free for the duration of the NSTA meeting (through April 6). This app, except for the smaller screen size and consequent shorter DNA strands, is identical to the iPad app OnScreen DNA Model. The other OnScreen Science apps dealing with nucleic acids in the cell are iPad-only. I recently wrote about some good reviews they’ve received, including three for inclusion in the NSTA Recommends online database. Links (App Store buttons) to the other apps can be found in the right sidebar. Of course, OnScreen DNA Model for iPhone is now free to anyone.

Here is the link to the free appOnScreen DNA Model for iPhone.

Enjoy, spread the word, and, if you like the app, please go to the App Store to rate and review it.

dna model

And the Winner for Best DNA Simulation on an iOS Device Is…

Tuesday, March 18th, 2014

No, in this imperfect world no one is going to be excited when the envelope containing the name of the winner in that sadly neglected category is opened. Still, my cell biology apps for the iPad have gotten some good reviews in the past several months in places that command respect, and I thought I’d gather links to them here to have a page that I could in turn link to whenever I wanted to make people aware of the reviews. Reviews of iPad apps to teach DNA structure and function are not to be found in highly traveled spots on the internet. Coverage of education apps is pretty thin, and what little there is mainly concentrates on very young learners, as does the Education category on Apple’s App Store, where apps with cartoon animals (goofy expressions preferred) dominate.

I keep hoping Apple will add a Science category to its App Store, but for now I have to choose Education (no chance to be visible as one of the top 200 paid apps) or Medical (slight chance to make the top 200 occasionally). I have opted for Medical, but, fortunately, someone at Apple noticed OnScreen DNA Model and selected it to get a certain amount of visibility in the Education category for iPad apps. Currently it is featured under Apps For the Classroom->Biology and Apps for High School->Biology->Cell Biology & Genetics. Of course I’d put it in Middle School also, but I’ll take whatever I can get. I’m sure it’s the main way people actually hear about OnScreen DNA Model, which can then lead to the other apps. Your health and well-being matter to us, which is why we want to provide you with all the information you need. Clomid may have some potential side effects, but understanding them can help you make informed decisions.

Although they are less likely to be seen than a mention on the App Store, detailed positive reviews from respected sources are great to receive. Just to have them all in one place, here are links to the seven reviews I’ll briefly comment on below.

Genetics Engineering & Biotechnology News

May 1, 2013 OnScreen Gene Transcription

June 1, 2013 OnScreen DNA Model

July 1, 2013 OnScreen DNA Replication


December 1, 2013 OnScreen Retrovirus

NSTA Recommends

February 21, 2014 OnScreen DNA Model


February 21, 2014 OnScreen DNA Replication


February 21, 2014 OnScreen DNA Replication

I ran across the Genetics Engineering & Biotechnology News online magazine site early last year and saw that they had a monthly Best Science Apps feature (alternating every two weeks with Best of the Web). The reviews were concise, but meaty enough to show that the reviewer was obviously spending some time with the apps and making useful observations about them, and that the reviewer was actually knowledgeable about the science. Since the section was called Best Science Apps, they weren’t publishing reviews of apps they didn’t like, but the apps weren’t all getting the four stars highest (“Excellent”) rating either. Some were as low as the two-star “Good” category. I thought my apps, dealing as they do with the basic structure and function of nucleic acids would likely be of interest to them.

In January 2013 I emailed the reviewer to suggest OnScreen DNA Model and OnScreen Gene Transcription for review, offering to provide promo codes for free download. This is not a form of bribery (apps were $3-4), but rather a courtesy to the perspective reviewer, who couldn’t be expected to buy every app that might be worth reviewing. Apple provides a certain number of these promo codes free to developers just so they can get the apps onto the devices of potential reviewers and such. Anyway, the response was positive to taking a look at the apps, sometime in the next month or so. When, in March, the reviewer gave me the go-ahead to send the promo codes (they expire four weeks after being created—the codes, not the apps downloaded with them), I sent codes for the two apps I’d mentioned plus one for OnScreen DNA Replication, which I had finished and gotten onto the App Store in the meantime.

I hoped for the best, but as with most creators awaiting judgment of their work (think of the playwright, at least in movies, awaiting the morning editions after opening night), I was a little anxious. I was 99.9% sure I didn’t have any scientific errors, but would the reviewer appreciate the things I was proud of, like the background text I had spent so much effort on? At least, if the apps weren’t even deemed “Good,” I would just get no review at all.

That would be cold comfort, but it’s more than can be said about online reviews posted by app customers on the App Store. One-star reviews there mean “hated it,” and every app developer will sooner or later gather a few nasty (sometimes plainly inaccurate) and unfair reviews, while having no way of responding to the reviews on the App Store. I keep meaning to write about that subject, but that’s not what I have in mind for this piece.

When I saw OnScreen Gene Transcription had made it to the Best Science Apps section of the May 1, 2013, issue of Genetics Engineering & Biotechnology News and had been rated a four-star Excellent app in the review, I was both gratified and relieved. As might be expected, my opinion of the reviewer rose even higher, but not just because of the overall rating. It was rewarding to see that someone knowledgeable and conscientious had appreciated my work, including parts of it I wasn’t sure would be noticed, like the background text and commentary and just the way it was designed. The short summation of the praiseworthy elements of the app (beside a check mark) was “Background section, nice simulation graphics and commentary.” In the spot for the not-so-hot attributes (beside an X) was a simple “None.”

For all I knew, that one review would be it for Genetic Engineering & Biotechnology News. Maybe they wouldn’t want to have more apps from the same developer, at least for a while. But in the very next batch of Best Science Apps (June 1, 2013), there was a review of OnScreen DNA Model, once again with the highest rating. Among other things, the reviewer noted how the simulation of denaturing and renaturing of the two DNA strands made the interaction between them intuitively clear. By the check mark was “Great 3D DNA model, great text content.” By the X: “None.”

Now I really hoped OnScreen DNA Replication would also be reviewed. And it was, in the next issue containing Best Science Apps (July 1, 2013), once again with the highest rating. By the check mark was “Great text content.” For the first time something appeared by the X: “The simulation graphics are a bit convoluted.” Within the text of the review appears “Due to the complexity of the process, the simulation is a bit difficult to follow; however, credit must be given to the attention to detail.” The ending of the review was about as complimentary as it could have been. “Just like the other apps by this developer, the OnScreen DNA Replication app is incredibly educational and fun to use.

The fourth of the OnScreen Science apps using the same basic 3D model of nucleic acids is OnScreen Retrovirus. This app made it to the App Store in June of 2013. For some reason, I didn’t send a promo code to the reviewer for the new app right away. Maybe in the back of my mind was the feeling that I shouldn’t press my luck, though I certainly hadn’t decided not to ask for a review. I was busy getting all the apps ready to run on iOS 7, which was a pretty major job that took weeks. I hadn’t even checked out the Genetic Engineering & Biotechnology News site until mid January of this year, where to my surprise I saw that OnScreen Retrovirus had been reviewed without my having provided a promo code. The review had a great beginning: “The people at OnScreen Science are at it again, this time using their 3D nucleic acid model to simulate cDNA synthesis from a viral RNA template following infection by a retrovirus.” I love that “at in again.” And the rating made my apps four-for-four in gaining the Excellent designation. By the check mark: “Great interface, easy navigation.” By the X: “None.”

Just to put the Excellent ratings in perspective, the distribution of the ratings for other apps (excluding the OnScreen apps) in the issues in which the OnScreen apps were reviewed was 6 Good, 12 Very Good, and 5 Excellent. OK, it’s not quite as impressive as an Oscar or a Nobel Prize, but it’s pretty good. I have no way of knowing if it’s actually helped sales of the apps, since I can’t tell who is buying them, never mind where they learned of them. There was no noticeable spike in sales after the publication of the reviews. Still, if nothing else, those reviews are something I can refer people to for confirmation that the apps are of a high quality. Not to be overlooked, either, is the morale boost one gets from feeling one’s work validated. The income from those apps is hardly enough to justify the effort required just to maintain them every time Apple comes out with a new iOS version or device; so recognition really helps, even if it’s recognition in an out-of-the-way niche on the internet. The apps are, after all, pretty much in the niche category. I will resist the temptation to advertise that the apps have received “prestigious” four-star awards, as one hears so often about a supposed honor, the very existence of which is known only to a few.

In case it hasn’t come through already, I recommend the Genetic Engineering & Biotechnology News site’s Best Science Apps section as a great way to find intelligent and useful evaluations of apps for biology and chemistry in particular, both for educational and research aid purposes.

The other reviews I want to mention are those recently placed online in the National Teachers Association’s data base called NSTA Recommends. Again, only reviews for apps that the NSTA reviewer, typically a science teacher, heartily recommends are included in there.

To quote from the web site:

Our panel of reviewers—top-flight teachers and other outstanding science educators—has determined that the products recommended here are among the best available supplements for science teaching.

Why no negative reviews? They can be fun to read, even to write, but teachers are pressed for time—so only products that are reviewed favorably make their way into NSTA Recommends.

I emailed NSTA with a suggestion that the three apps devoted to DNA’s structure and functioning in the cell be considered for review and got a favorable response. It took quite a while after the NSTA contact said they’d be interested in looking at the apps before they actually got to them. One set of promo codes expired and the next was getting close to its expiration date before NSTA lined up a reviewer who downloaded the apps. I was just glad it was happening, since the NSTA is a large organization, with over 55,000 members engaged in science education, spanning the whole K-College range of students. I don’t know how many teachers use the data base, but getting a spot on NSTA Recommends list with favorable reviews couldn’t hurt.

The reviews, once they had been reported and published on NSTA Recommends, were all I could have hoped for. Again I was gratified to see that my work had been appreciated by someone that obviously had the experience to make his opinion valuable. And the grade level was listed as 6-College, exactly as I would have said myself! The NSTA reviews were not only thorough and insightful; they had a very practical, classroom-oriented angle, always focused on the question of what value would these apps be to a teacher. I thought it was a very good observation by the reviewer that the apps could serve to increase the teacher’s knowledge and understanding of the material covered in the apps, not just the students’. I was delighted that the reviewer made a point one seldom hears about apps that aren’t free, when he referred to the apps as “low-cost.” The reviewer had also noticed that there is a version of OnScreen DNA Model available for the iPhone (and iPod Touch) and mentioned that the students could download that app onto their personal devices, an observation that deserves extra points, I think.

The reviews made the observation that a teacher could project the iPad screen image onto a bigger screen for all the class to see, whether because only the teacher had an iPad or to make sure certain points were getting across. All of the features of the apps, including the organization and content of the background text, the ability to pause the simulations whenever desired for making a comment or reading commentary, the multiple views of the process, with the 3D model and the linear representation of the strands’ base sequences, and the attractiveness of the apps to students, were commented on in favorable terms.

Reviewing apps for NSTA Recommends must still be quite new. Although the reviews appropriately designated the format as “App,” the menu for restricting the NSTA Recommends online database search by format didn’t include “App” as an option. I’ve pointed this out, so it may be fixed by the time anyone reads this. The time to be considered “New” on NSTA Recommends is only two weeks, during which time a new review will show up when a searcher checks the New box. After that, only apps found by word in the title, author, or word in the text show up (with the option to restrict the search by format) in a search of the database. Unfortunately, due to some glitch, for all but the last three days of the OnScreen Science Apps’ time to show up as New, their reviews appeared without images, which was about as appealing as a Facebook or LinkedIn profile without a picture, especially for apps that are, above all, graphical in nature. That’s fixed now. Check them out.

OnScreen Retrovirus Shows How the AIDS Virus Copies Its Genome

Thursday, September 12th, 2013

OnScreen Retrovirus, my latest iPad app has been on the App Store for a couple of months now, so it’s high time I said something about it. Since the new iPad & iPhone operating system iOS 7 will be available to the general public September 18 and Apple is now accepting submissions of new apps and app updates written for it, I can show what the app will look like with the new interface. Let that be a justification for the antabuse delay.

retro action

The AIDS virus is the most notorious of the retroviruses, which is why I put it in the headline, but there are many more, including some nasty ones that cause cancer. I didn’t know much about retroviruses, or any viruses for that matter, until a year or so ago, when I decided I really should learn more. The detailed knowledge of how DNA works, which I gained during the course of developing the other DNA apps (OnScreen DNA Model, OnScreen Gene Transcription, and OnScreen DNA Replication), had heightened my curiosity about viruses, while providing me with the background to make the road to understanding easier.

Viruses are very strange creatures—or should I say objects? To quote from the first paragraph of my entry on Viruses in the app (from Useful Stuff popover view in one of the images below):

Are viruses alive? Look up virus metabolism, and you’ll come to a blank page. So viruses aren’t alive in the usual sense that living cells and multicellular creatures are. Yet viruses consist of proteins and genetic material, which are crucial constituents of living creatures, and, when in the proper environment (in their “host” cell), viruses can reproduce in their own unique way. So it’s really a matter of taste whether to call them alive or not.

Just as “real” organisms do, viruses make use of nucleic acids to store instructions for making the proteins vital to their survival. These proteins are few in number since the virus doesn’t have to make a living, but only hole up safely until it can enter a cell to reproduce, making use of a cell’s protein-construction apparatus. The full set of nucleotide sequences of the virus’s nucleic acid (which may be DNA or RNA, single-stranded or double-stranded, depending on the type of virus it is) is its genome.

The genome of a retrovirus is contained in a single strand of RNA. The way in which a retrovirus uses a few enzymes (proteins) it contains to construct a double-helical-strand of DNA, which also contains its genome, the virus’s RNA serving as a template, is fascinating. Mind-blowing, I think, as it depends on there being certain sequences of nucleotides at just the right place and in just the right order to enable nucleic acid strands involved in DNA synthesis to separate and then join again at another place in order to continue the process. Anyway, the simulations of OnScreen Retrovirus show how this happens in a detailed way that I think makes it very clear. And clearly mind-blowing!

retro commentary

OnScreen Retrovirus doesn’t show either the full virus entering the cell or the completed DNA being inserted into the host cell’s DNA. There are some good animations you can find online to see, at least in a sketchy way, those events. What I have not found online is any detailed simulation of the genome replication, and that is what OnScreen Retrovirus takes care of, making use of the same three-dimensional ball-and-stick model of nucleic acids featured in the other OnScreen Science iPad simulations.

The app’s Useful Stuff items and the Commentary for each step of copying the retrovirus’s RNA genome to DNA explain what you see in the simulations, necessarily introducing several key concepts, of which the screen shots should give an idea.

retro contents

It’s a accutane bit disconcerting to think of it (like the knowledge that our bodies contain more bacteria than human cells), but our DNA, for all its stability in the context of ordinary cell metabolism, contains many short segments called transposons that either move from place to place in their chromosome or make copies of themselves to be inserted at another location. Transposons accomplish their transpositions by utilizing the cell’s machinery to produce the enzymes needed to accomplish the task. In particular, those called retrotransposons have their DNA transcribed to strands of messenger RNA, some of which are used to synthesize enzymes, which act on other strands of the RNA to make double-stranded DNA to be inserted elsewhere in the cell’s DNA. Exactly the way a retrovirus does. So the simulation of OnScreen Retrovirus provides a simulation of a retrotransposon’s DNA synthesis as a bonus.

About iOS 7, I can say that for the OnScreen Science DNA apps, the changes are basically cosmetic and, I think, all for the good. The old tool bars and buttons of previous versions of iOS seem awfully dark and gloomy compared to the new ones. The new “buttons” are really more like links on a web site, just colored text on a light background, but people are used to links, and I think that change will go over well.

I hope to have all four of the OnScreen Science iPad apps that deal with DNA and RNA ready for sale on the App Store before the public release of iOS 7. The new updates will continue to support iOS 6, though not iOS 5, which means they are saying goodbye to the original iPad. Anyone wanting to run these apps on an original iPad had better hurry to get them before the updates go through. The updated apps will run on iOS 6 and just switch over automatically to their iOS 7 versions once they are running on a device with iOS 7 installed.

Update: before I could post this, I got word that version 2.5 of OnScreen DNA Model was going live on the App Store. So it is now too late to get it for the original iPad. I think Apple has app updates for iOS 7 on the fast track for approval, since I submitted only yesterday. So, you really must hurry if you have an original iPad and want to run these apps.

FLASH! (added 9/21/13) Although Apple has not announced it yet, it is now possible (and hopefully a permanent new feature) to download earlier versions of apps that have been left behind when updates raised the minimum iOS requirement. That means it is still possible, for instance, for people using the original iPad, which can’t run any iOS version greater than 5.1, to purchase OnScreen DNA Model even though the most recent version 2.5 requires iOS 6 or greater. Version 2.4 of the app, which is virtually identical, can still be downloaded. Just proceed as if you hadn’t noticed the iOS requirement. The App Store software will detect that your device can’t support the latest version of the app and will ask if you want to get a previous one your device can run instead. If you say yes, the older version will download and install. And all is as if you had purchased the app when that version was the latest. You are https://drbarletta.com/celexa-citalopram/ entitled to free updates on other devices in the future. I verified all this myself with actual downloads, but we can’t know whether it’s a permanent feature or just a test of a possible one until Apple says something about it. So far, they have only acknowledged it for updates on older systems.

We’re Celebrating DNA Day (April 25) with a One-Day Sale: All DNA Apps Only 99¢!

Wednesday, April 24th, 2013

Sixty years since the double helix structure of DNA was discovered! Ten years since the human genome was mapped!

From the Centers for Disease Control and Prevention (CDC) website: “National DNA Day is a special day when teachers, students, and the public can learn more about genetics and genomics. The National Human Genome Research Institute (NHGRI) at the National Institutes of Health has sponsored DNA Day for the past nine years, to commemorate the completion of the Human Genome Project in April 2003 and of Watson and Crick’s discovery of the double helix structure of DNA.”

To celebrate DNA Day, we are reducing our price on DNA-related apps to 99¢ for the day (with comparable price reductions on app stores for every country). The apps to be priced at 99¢ on April 25 are:

OnScreen DNA Model for iPad
 (regularly $3.99)

OnScreen DNA Replication for iPad (regularly $2.99) 

OnScreen Gene Transcription for iPad
(regularly $2.99) 

OnScreen DNA Model for iPhone (regularly $2.99) 

OnScreen DNA Model for Mac (regularly $2.99)

The OnScreen DNA Model apps (on iPad, iPhone, and Mac) focus on the details of DNA’s double helix structure, using a 3D, color-coded, virtual model that the user can rotate and zoom. Explanatory text deals with the molecules and chemical bonds of the double helix. Animations show two important lab and biotechnology phenomena of DNA: denaturation, in which the strands separate, and renaturation, in which they reunite.

OnScreen DNA Replication
makes use of the same DNA model to show how, through the action of specific enzymes, a DNA molecule is perfectly duplicated before cell division. The various steps in the process, including the action of telomerase to prevent strand shortening, are shown in 3D animations and described in some detail.

OnScreen Gene Transcription makes use of the same DNA model to show how a genetic recipe stored in the sequence of molecules of DNA is copied by construction of a messenger RNA molecule. The various steps in the process, shown in 3D animations that make it clear that messenger RNA is constructed as part of a hybrid RNA/DNA double helix, not a 2D ladder, are described in some detail, emphasizing the role of certain enzymes.

The apps show details of structure and processes that are sometimes depicted in erroneous ways in places that should know better. Animations make the processes memorable. Discussion of the chemistry involved is at an introductory level, so the apps are useful for learning about DNA to a wide range of students or anyone interested in the science of Life. There really is nothing comparable on the internet.

For iPad users, DNA Day is a chance to get all three OnScreen Science’s DNA apps for less than the regular price of OnScreen DNA Model alone. The apps work great and look great on an iPad Mini.

Educational purchasers enrolled in Apple’s Volume Purchase Program still get 50% off the sale price when buying twenty or more copies at a time.

Spread the word. This is a one-day-only sale.

We’re Celebrating DNA Day (April 20) with a One-Day Sale: All DNA Apps Only 99¢!

Friday, April 20th, 2012

From the National Humane Genome Research Institute website: “DNA Day is a unique day when students, teachers and the public can learn more about genetics and genomics! The day commemorates the completion of the Human Genome Project in April 2003, and the discovery of DNA’s double helix. This year, NHGRI will celebrate National DNA Day on April 20, 2012.”

We are reducing our price on DNA-related apps to 99¢ for the day. The apps to be priced at 99¢ on April 20 are:

OnScreen DNA Model for iPad (regularly $3.99)

OnScreen Gene Transcription for iPad (regularly $3.99)


OnScreen DNA Model for iPhone
(regularly $2.99) 

OnScreen DNA Model on the Mac App Store (regularly $3.99)

The OnScreen DNA Model apps focus on the details of DNA’s double helix structure, using a 3D, color-coded, virtual model that the user can rotate and zoom. Explanatory text deals with the molecules and chemical bonds of the double helix. Animations show two important lab phenomena of DNA: denaturation, in which the strands separate, and renaturation, in which they reunite.

OnScreen Gene Transcription makes use of the same DNA model to show how a genetic recipe stored in the sequence of molecules of DNA is copied by construction of a messenger RNA molecule. The various steps in the process, shown in animations, are described in some detail, emphasizing the role of certain enzymes.

The apps show details of structure and process that are sometimes depicted in erroneous ways in places that should know better. Discussion of the chemistry involved is at an introductory level, so the apps are useful for learning about DNA to a wide range of students or anyone interested in the science of Life.

Taking OnScreen DNA Model to the Mac App Store

Thursday, February 10th, 2011

I’m happy to say that OnScreen DNA Model for Mac, barring an unexpected delay by Apple’s gatekeepers (it’s been waiting for review for a week), will soon be available on the Mac App Store. Check out nondummies.com for news. I’ll intersperse a few screen shots from the app below as a preview of things to come. While I’ve read of some independent Mac developers worrying about what the advent of the Mac App Store might mean for their sales and profits, I am almost certain it will be beneficial for the OnScreen Science, Inc. apps.

macapp

The Mac App Store (limited to Macs running at least OS 10.6.6) provides a virtual shopping center for Mac users wanting to purchase software to run on their Macs or just to browse through the selections—conveniently categorized—for future reference, much as the iTunes App Store has been doing for iPhone and iPad users for quite some time.

Of course Apple keeps 30% of each sale for itself, but in addition to the great drawing power of an Apple-run app store, it’s providing a lot more for that. Start with buyer confidence. If an app is for sale on an Apple-run app store, Apple has at least verified that it is not obviously buggy nor, in the reviewer’s judgment, totally worthless. Furthermore, buying the app is very simple, as the buyer’s credit card info is already in Apple’s (presumably secure) possession, and installation of the app on the user’s computer is automatic and immediate. And the procedure will already be familiar to many users from earlier experience with iTunes and its App Store.

Each app approved for sale on the app store is given a chance to present its best face through the developer’s own description and up to five screen shots (chosen by the developer), showing the app’s features. I should add that the feature page for the app can also serve to give users clues as to which apps are likely “crap apps.” Personally, I’m always a little suspicious of apps with only one or two screen shots.

Apps not only appear (with name and icon) in the array of apps displayed by category but can be found via keyword search. This search feature is crucial for niche apps such as those sold by OnScreen Science, Inc. because after a few days an app that’s not a big seller tends to become practically invisible to all but the most dedicated browsers, as the app moves farther down the list ordered by release date. The big sellers remain visible by virtue of their sales prednisone in a separate list devoted to the most popular apps.

Now, for games, the importance of being on the list of popular apps is obvious, and this is what has driven the “race to the bottom” for app prices, as the presence of high quality games selling for 99¢ can make an app, even a “serious” one in a very different category, seem outrageously expensive at $4.99 in some minds. I think there’s also something about the ratio of the price of the app to that of the device it runs on (and screen size) that makes app prices so low for apps on the iTunes App Store. But in the final analysis it’s really the ability of some developers to make a lot of money selling apps at a low price, thanks to the enormous number of potential customers, all funneled to a single buying point, that keeps prices low. That and the “free” apps, which I may write something about at a later time.

Let me say a little about the “desktop” OnScreen DNA apps from which the OnScreen DNA Model apps spring. OnScreen DNA, sold in three flavors—Lite, Standard, and Pro—has been available for Mac and Windows computers for several years. All these apps, especially aimed at biology teachers for use with students or for classroom demonstrations, are presented in a tutorial format that guides users through activities, complete with animations, designed to teach the structure and function of DNA.

Anyone that already has OnScreen DNA Lite will not be getting anything essentially new by buying OnScreen DNA Model on the Mac App Store. Rotating the model with the mouse is easier in the new app, as it is done with mouse drags requiring no key to be depressed. Some might prefer the new presentation of DNA facts to the old tutorial method. But as far as the basic model and the two simulations go, nothing much has changed.

single

The Lite version deals mainly with the structure of DNA, though it includes simulations of denaturation and renaturation. OnScreen DNA (without the “Lite” qualifier) adds simulations of gene transcription and DNA replication with a good deal of detail about the enzymes involved and an accurate depiction of the basic steps (hydrogen bond breaking, strand unwinding, nucleotide chain forming, etc.), including proper direction of chain-building, primer RNA and Okazaki fragment construction, and even the role of telomerase in solving the “end problem” of DNA replication.The Pro version adds simulations in which the user, not limited to observing processes unfold, tests his or her knowledge by actively selecting the proper enzymes at the proper time and choosing the next nucleoside to add to a growing polymer chain. I should add that these apps, being designed mainly for teachers, include interactive tests, the results of which can be stored on the computer (under password protection if desired). More details about these apps, which are still unique and still for sale, can be found at onscreen-dna.com.

The aforementioned web site has been (and is still at the time I write) the only place to buy these apps. Thus sales have largely been limited to the hardy Googler that seeks DNA teaching software, or is at least searching for detailed information about DNA. No one with just a vague interest in science and biology is likely to stumble upon the web site. The price for advertising in even a relatively small circulation magazine for science teachers is really too high to justify from the sales it would likely produce, based on past experience. Though a ninety-day, no-questions-asked, satisfaction guaranteed policy for complete refund is in effect for our apps, I’m sure many people are hesitant to buy from an unknown online source. Thus the Apple seal of approval could be extremely valuable.

dnamenu

After the iPad was announced, I came to see it as a opportunity to bring some of the OnScreen DNA software to a larger audience (using the existing code for displaying the three-dimensional DNA images on the iPad). I knew from experience with “DNA Day” sales for which I announced large discounts for a short period via a few Mac news sites that there were people who were not teachers that might be interested in a way to learn more about DNA for a price that wasn’t too high.

By far the easiest path seemed to be to start with a port of OnScreen DNA Lite to the iPad. Partly from screen space considerations I decided to scrap the tutorial format. I refer the interested reader to an earlier blog post The Thinking Behind the OnScreen DNA Lite™ iPad App for more about the iPad app. In some ways I felt the iPad app to be better than the Mac/Win versions just because of the direct response to the fingers, unmediated by a mouse. But, due to limitations of the somewhat stripped down version of Open GL (graphics programming API) available on the iPad, some features were lost, such as the ability to ctrl-click on any component of the DNA model to see it labeled. Of course ctrl-click has no meaning for the iPad anyway. In place of the labeling feature I added a popover image with a key showing how all the different parts alprazolam were represented in the model.

The iPad app was launched with the old name OnScreen DNA Lite, which didn’t make all that much sense in the iPad context. This was rectified by the new and current name OnScreen DNA Model, which is more descriptive and avoids the implication that there is a more advanced version of the app available for the iPad. At the same time as the name change, the app gained a significant enhancement with an on-screen (popover on iPad) guide to facts about DNA’s geometry, molecular components, and chemical bonds and how they are displayed in the model. The blog post OnScreen DNA Model for iPad and iPhone: New Name, More DNA Background illustrates the changes. Oh yes, as the title of that post indicates, a version for the iPhone and iPod Touch is also available.

grooves

When the Mac App Store was announced, I had no doubt that I would want to bring the OnScreen Science, Inc. science education apps (OnScreen DNA and OnScreen Particle Physics) to it. It took a bit of thought to decide what to do first, but based on the relative success on OnScreen DNA Model on the iPad (sales have continued to rise, contrary to the usual fate of apps on the iTunes App Store), I decided to get a version of OnScreen DNA Model ready for the Mac App Store.

This was a decision to make the Mac version very similar to the iPad version, rather than a small modification of the existing OnScreen DNA Lite. Thus the tutorial and the division into activities are not found in the Mac App Store version of OnScreen DNA Model. I think this is a net improvement due to the greater freedom it gives the user, even at the risk of some important points possibly being missed and without the potential benefit of a guided discovery that aims to get the user thinking.

To a certain extent, how successful the new app is on the Mac App Store will determine how quickly I move to bring the simulations of OnScreen DNA to the store. There are a number of decisions, really, about what to attempt in the way of simulated DNA processes for the iPad version and whether to work on the iPad or the Mac version first. It may make more sense to get OnScreen Particle Physics (onscreen-sci.com), our classic particle detection chamber simulation, onto either or both App Stores first.

Time will tell https://www.capefearcardiology.com/clomid-over-the-counter/ whether I’m being too optimistic, but I’m really encouraged by the opportunity the Mac App Store is giving me and other independent developers to get our apps before a lot of new eyes and minds.

OnScreen DNA Model for iPad and iPhone: New Name, More DNA Background

Tuesday, September 28th, 2010

I’m pleased to say that OnScreen Science has a new iPad app on the iTunes App Store—OnScreen DNA Model 2.0—with another app—OnScreen DNA Model for iPhone 2.0—awaiting review and hopefully available in a matter of days. Actually, they are major updates of apps previously called OnScreen DNA Lite and are free to anyone who purchased either of those apps.

The main change to the two apps is the addition of accessible background material on DNA and explanations of how different features of DNA structure are represented in the virtual DNA model in a memorable, instructive way. For example, there are now discussions of DNA strand polarity—what it means and how it is represented in the model—and the major and minor grooves of the DNA double helix—what they are, their physical origin, and how to make them appear in the model. This new material makes the apps more self-contained than before, although they are still not meant to be a sole source for learning about DNA structure. The point is made that the model represents certain molecular components of DNA, not atoms.

The new klonopin material is found in a popover view in the iPad version of OnScreen DNA Model. The popover view appears at the tap of a new button called “Useful Stuff”. The image below shows the interactive table of contents listing the various topics dealt with. The user only has to tap on a disclosure button (blue arrow) to see a discussion of the corresponding feature and how it is modeled in the app.

contents

Below is shown the Nucleotides item, or rather the beginning of it since there is more text to be read after scrolling down in the app.

nucleotide discussion

Because of the smaller screen size the iPhone app cannot display the full table of contents on a screen, but all items can be seen and accessed by scrolling. The content of the various items are the same in iPad and iPhone versions of OnScreen DNA Model. Below is the top of the table of contents in the iPhone app.

iphone contents

Seen below is the Nucleotides item from the topic list. Less text is visible at a time in the iPhone version, but everything in the iPad version is accessible by scrolling. The text shown below is what would be seen in the iPad version after scrolling down from the point shown in the iPad example above.

iphone item

Why the name change? OnScreen DNA Lite implies there is a “full” or standard version, but there isn’t. “Lite” also gives the idea of limitations, perhaps severe limitations. The name just sort of snuck over from the desktop software, where there are Lite, Standard, and Pro versions of OnScreen DNA. Each higher version adds something to the version at the level below it, and there is a policy of letting customers apply the price they’ve already paid to the price of the higher level version whenever they want to retin-a upgrade. That is not possible for an app, given the way the iTunes App Store is set up.

The plan is to bring some of the simulations of DNA processes to the iPad (less likely to the iPhone with its smaller screen) in the future, but the names of those apps will more directly reflect what they simulate.

In any case, OnScreen DNA Model perfectly fits the app, which consists of a virtual 3D model designed to make essential features of DNA readily apparent. It is a superior model that stands on its own and shouldn’t have a name https://personalsolutionsinc.org/ativan-lorazepam/ that could diminish it in the mind of anyone first encountering it.

While the name and the extended background guide are new, the basics of the model remain the same as presented in earlier blog posts: OnScreen DNA Lite™ for iPhone Now Available, An OnScreen DNA Lite™ for iPad Gallery, and The Thinking Behind the OnScreen DNA Lite™ iPad App. See the iTunes App Store descriptions of OnScreen DNA Model and OnScreen DNA Model for iPhone and iPod Touch too of course.

iPhone App Update Roundup

Wednesday, August 11th, 2010

I’ve gotten three of the OnScreen Science, Inc. iPhone apps reworked for iOS 4 and the new iPhone 4. Two of them—OnScreen Pitch Count 1.5 and OnScreen GPA Pro 1.2—have been approved and are now on sale. OnScreen DNA Lite for iPhone 1.1 is still in the queue for review. If things proceed as for the other two (week of waiting, a few hours in review), then the update of the third app should be on sale August 12 or 13. The update of the fourth app, OnScreen QB Stats, involved more than just making it work and look good under the new system and on the high-definition “Retina” screen of the new iPhone. I wanted to give it the same improved user interface and navigation among games and players that OnScreen Pitch Count had recently received, so it is taking a little longer. Given that football season is still a ways off, OnScreen QB Stats was a lower priority. Assuming the rest of testing and debugging is not prolonged, that update should be on sale by around August 20.

One of the nifty new features of iOS 4 on later generation iPhones and iPod Touches is multitasking. Whether or not it’s “true multitasking,” Apple’s implementation of the feature allows for keeping an app in memory when a new app is chosen to run on the same device, and then later to quickly switch back to the original app without having to load it again. Since the OnScreen Science apps had been programmed to remember where they had been whenever the user jumped to another app, so that they could resume right where they left off upon relaunch, the only difference with multitasking will be in the speed of resumption, but a second or two is a second or two.

The other essential part of updating for the latest iPhone is to make sure the screen displays of the app look good on the Retina screen. That means a developer has to produce and include higher resolution versions of any images and icons that the app displays. New screen shots for the iTunes App Store display of the app also have to be submitted. These were straightforward but somewhat tedious tasks. There weren’t many such images, so I had it easy compared to some people.

The one app I was worried about providing a nice iPhone 4 version for was OnScreen DNA Lite for iPhone. The virtual DNA model is drawn in 3D using the iOS implementation of OpenGL ES. The drawing assumes a certain pixel density, which is way off for the Retina display of the iPhone 4 which has a higher pixel density. Images drawn with the unmodified OpenGL code are displayed on the Retina screen just by blowing them up, so that they actually look worse—much more jagged—than they did on the old iPhone. It took me a while to figure it out, but the solution was very simple. I only needed to put in a test for what device the app was running on, and in case it was iPhone 4 make a change to one line of the old code (doubling the dimensions of glViewport for the iPhone 4) and add a call to scale the image by a factor of 2. I couldn’t believe my luck when I tried just that and saw it was all my code needed. Not only does the iPhone 4 version look better than the old version did on the iPhone 4, it looks better than the old version did on the old iPhone, since it takes advantage of the higher definition screen (extra pixels) during the image rendering. This can be seen in the comparison below.

old dna image

Above is a screen shot from the original iPhone running OnScreen DNA Lite for iPhone.

iphone4 dna image

Above is a screen shot from an iPhone 4 running OnScreen DNA Lite for iPhone.

There was another update to OnScreen Pitch Count before the latest version 1.5. A user had encountered the problem of not being able to view the pitching stats for the last couple of pitchers when he’d kept track of pitches for numerous pitchers on both teams. This turned out to be a bug I’d introduced in version 1.4 when I failed to take into account a change in view dimensions made necessary by the addtion of a toolbar at the top of the screen. The user called me to point out the bug, and I was grateful for that. I had a fix submitted in a day or two. I had already been working on the iOS 4 upgrade, but felt I needed to get the bug fix online as soon as possible without waiting for completion of the other changes, which is why 1.5 followed 1.4.1 so closely.